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Time reversal invariance, T, is well known to hold in quantum electrodynamics. However, it has caused
difficulties in classical electrodynamics �CED�. These are shown to be conceptual misunderstandings. When
corrected: �1� the classical equations of motion of a charge are T invariant despite the explicit occurrence of
retarded fields in the equations of motion. �2� Advanced fields violate causality and occur neither in nature nor
in the CED that describes it. �3� The nonexistence of advanced fields in nature implies an “arrow of time” for
electromagnetic radiation: radiation emission is an overall dissipative phenomenon. This electromagnetic “ar-
row of time” does not contradict time reversal invariance.
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Proofs of time reversal invariance, T, of Maxwell’s equa-
tions have been known for a long time both in quantum
electrodynamics �1� and in classical electrodynamics �CED�
�2�. The concern here, however, is not with Maxwell’s equa-
tions but with the classical equations of motion of a charged
particle. In QED, these are field equations �Dirac or Klein-
Gordon� but in CED, they are point particle equations
and depend explicitly on retarded interactions. Therefore,
if retarded fields transform into advanced fields under T �as
is commonly believed� �2�, CED is not time reversal invari-
ant. This lack of invariance claim seems to be confirmed by
the occurrence of both, a second and a third time derivative
in the Lorentz-Abraham-Dirac equations. But how can the
classical limit of a T invariant QED yield a non-T invariant
CED?

I shall first explain why retarded fields remain retarded
under time reversal. Then I shall prove that T does hold for
CED. Finally, I shall show that the absence of advanced
fields is at least in part responsible for an “arrow of time” in
CED.

Time reversal, T, is defined for an arbitrary point �t ,x� by
the map

T: t → t� = − t, x → x� = x . �1�

A classical point charge, q, moves relativistically on a world
line, z���, with four-velocity v����=dz���� /d�, the proper
time being defined by d�=dz0 /�, �= �1−v2�−1/2. The four-
velocity v����= ����� ,����v���� transforms under T in
Minkowski space as follows: the three-velocity according to
�1� transforms as v���→v�����=−v����, and ����→�����
=dz�0���� /d��=dz0��� /d�=�����1. Therefore, v������
= ������ ,−�����v�����. When one chooses the metric �−1,
+1, +1, +1�, a point x� in Minkowski space M transforms
into M� under T as x�→x�, and the velocity as v����
→v������=−v�����.

The future is characterized in M by the increase of the
proper time, �, and in M� by the increase of ��. The tangent
vectors to the original world line and to the time reversed

world line �the respective velocity four-vectors� point into
opposite future light cones in M and M�. If a charge is
moved by an external force from its initial conditions at �i to
its final state at � f, the time reversed charge is moved by the
time reversed force from the initial conditions at �i�=� f to its
final state at � f�=�i. With time inversion of the external force,
the same world line is traversed in the opposite time direc-
tion. Thus, for point charges, time reversal means motion
reversal. It is not a reflection in Minkowski space by the
hyperplane t=0.

The Newtonian equations of motion are well known to be
T invariant nonrelativistically as well as relativistically. But
the charged particle equations require an additional term be-
cause of radiation emission, and that term depends on the
retarded field. This fact can possibly violate T invariance. I
shall show that it does not.

The charge q produces a four-current �using Gaussian
units and c=1�

j��x,t� = q� �4�x − z�v����d� . �2�

The current fourvector, j�= �� , j�, transforms like the four-
velocity,

T: j��t,x� → − j��t�,x� . �3�

The time reversal transformations of the electromagnetic
fields, E and B, produced by a moving charge q are easiest
derived from their potentials, A��	 ,A� using F�
=��A


−�
A�. In the Lorenz gauge, ��A�=0, the Maxwell equations
reduce to �A�=−j� Thus, if the four-potentials transform
like the four-current, they yield

A��x� → − A��x�� , �4�

as suggested by �3�. The Maxwell equations would then be T
invariant.

At a field point, P, with x= �t ,x�, the fields are the result of
the retarded radiation from the charge q at point Q on the
world line at z���. With the above metric, the vector to P at x
from Q at z���, x−z���, lies on the future light cone from z.
When projected onto the spacelike hyperplane normal to v�,
it becomes a spacelike four vector of unit vector u� and of*Electronic address: Rohrlich@syr.edu
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magnitude ��x ,��=u�����x−z������0 The retarded poten-
tial Aret

� at a space point x� due to a charge q traversing the
world line z���� in the positive � direction is therefore given
by �2�

Aret
� �x,�� = qv����/��x,�� . �5�

Under T, the future light cone relative to � �retarded radia-
tion� becomes the light cone from Q into its future which is
now relative to �� �retarded radiation again!�. Relative to ��,
the velocity four vector, v������, determines which light cone
is the future light cone. Therefore, the transformed A� is also
retarded. And since the distance ��x ,��→��x� ,��� is invari-
ant �and remains positive�, A� transforms like v� and re-
mains retarded,

T: Aret
� �x,�� → Aret���x�,��� = − A�

ret�x�,��� . �6�

The point is that “retarded” and “advanced” always refer to
the time direction in which the charges move that emit those
fields. Radiation is always emitted into the future light cone
and is thus always retarded. That holds also in the time-
reversed world. Radiation into the past violates causality. Ad-
vanced radiation, therefore, does not exist in nature.

Equation �6� confirms �4� and the T invariance of Max-
well’s equations. From �6� also follows immediately,

T: Fret
�
�x� → − F�


ret �x�� . �7�

Now consider the equations of motion of a charge q. In
electrodynamics, the relativistic Newtonian force equations,
mdv� /d�=G�, cannot be maintained, because they do not
account for the emitted radiation.

The correct equations of motion for charged particles
were first derived by Lorentz and Abraham in the beginning
of the 20th century �before 1905!�, and later, covariantly, by
Dirac �3�.

The derivation of the LAD equations by Dirac starts with

mbaredv�/d� = G� + Fret
� , �8�

where Fret
� =qFret

��v� is the particles own field, and G� is the
applied external force �which need not be electromagnetic�.
The identity

Fret
�
 = �1/2��Fret

�
 + Fadv
�
 � + �1/2��Fret

�
 − Fadv
�
 � = F+

�
 + F−
�


�9�

separates this retarded field into a covariant Coulomb field
and a radiation field. Note that this is a separation by time
symmetry not by time inversion symmetry. The first term,
F+

�
, gives the electromagnetic correction to the inertial term,
the second term, F−

�
, gives the self-interaction force, �, due
to the remaining field. Thus,

qF+
��v� = − melmdv�/d�, qF−

��v� = �. �10�

The calculation requires that one starts with the self-field
on a finite radius cylinder that surrounds the world line.
Then one takes the limit to zero radius �3,2�. Note that the
advanced fields occur in �9� only as a mathematical
convenience. They do not enter as physical quantities. In
fact, Dirac’s result �12� can also be derived without that ar-
tifice �4�.

After combining the mass terms using m=mbare+melm, the
equations are

mdv�/d� = G� + �. �11�

The self-force includes the radiation reaction force �the nega-
tive of the rate of energy and momentum emission of radia-
tion.�

The term � in �11� has a long history. Using
�0= �2/3�q2 /m, Dirac obtained the expression

� = m�0�d2v/d�2 − v��dv�/d���dv�/d��� �12�

by an expansion. That expansion is not T invariant. The
corresponding Eq. �11� with � in �12� �known as the LAD
equation� is therefore also not T invariant. The expansion
must be carried out separately before and after time reversal
of �. It is specific to each time direction.

But �12� had to be modified because it leads to unphysical
solutions. After many attempts at that, the correct expression
for � was first characterized by Spohn �5,6�. Satisfying
Spohn’s criteria of being in the critical manifold of solutions,
the new self-force is

���� = m�0���
 + v�v
�dG
/d� , �13�

where ��
 is the metric tensor and m�0�2/3�q2. Equations
�11� and �13� comprise the Landau-Lifshitz equation �7�.
Note that �12� and �13� are equal up to higher orders of
�0d /d� which are outside the validity limits of classical
physics.

Two comments on the self-interaction term �: �1� The
self-interaction term is necessary because it includes the rate
of energy-momentum emission, dPelm

� /d�, that cannot be ac-
counted for by the Newtonian equation �Eq. �11� without
��. �2� The term � is also sufficient in that higher orders of
�0d /d� involve time intervals too small for the validity of
classical physics. Thus, for example, � contains the term

�0v
�v�dG�/d� = m�0v

�v�d2va/d�2

= − m�0v
��dv�/d���dva/d�� . �14�

The first equality is valid only to first order in �0. Expression
�14� is exactly the rate at which energy-momentum of radia-
tion is lost by the accelerated charge �the relativistic gener-
alization of the Larmor formula�. It occurs also in Dirac’s
�, Eq. �12�.

Turning to misconceptions on time reversal, the difficulty
in the previous and incorrect view of time reversal arose
from the last term in Eq. �9�, F−

�
. In that view, retarded fields
become advanced fields under T �2�. That changes the sign of
� under time reversal in the equation of motion �11� while
the other terms keep their signs. The result is lack of T in-
variance. But when retarded fields remain retarded, and ad-
vanced fields remain advanced, the equations of motion �11�
remain invariant under T.

Explicitly, since a special case of the external force, G� is
an external electromagnetic force, G�=qFext

��va, one sees that
time reversal gives
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T: G���� → G������ = G����� . �15�

The equations of motion �11� with � given by �10� or �13�
therefore transform as

T: md2x�/d�2 = G� + � → md2x������/d��2

= G������ + ������

or

md2x�����/d��2 = G����� + ����� . �16�

Therefore, the equations of motion are T invariant.
Finally, I must return to the issue of radiation dissipation.

The typical emission of radiation by moving charges is dis-
sipative in the sense that the energy and momentum of radia-
tion absorbed from other sources is negligibly small com-
pared to the radiation emitted. Only two alternatives could

weaken that dissipation: reabsorption of the emitted radia-
tion, or arrival and absorption of advanced radiation. The
latter is excluded because it would have to come from
sources in the future going in the negative time direction and
arriving at the particle on a future light cone. This violates
causality. The reabsorption of the charge’s own radiation is
possible by suitable reflection but is always smaller than the
emitted radiation. The limiting case in which the emitted
radiation is fully reflected back to the moving charges and is
fully reabsorbed is the case of hyperbolic motion. A perfectly
reflecting cylinder concentric to a uniformly accelerated par-
ticle beam reflects the emitted radiation back onto the par-
ticles resulting in complete reabsorption. With that excep-
tion, radiation emission is dissipative. It follows that there
exists an arrow of time of electromagnetic radiation. And this
holds despite T invariance.
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